Multilinear models of single cell responses in the medial nucleus of the trapezoid body.
نویسندگان
چکیده
The representation of acoustic stimuli in the brainstem forms the basis for higher auditory processing. While some characteristics of this representation (e.g. tuning curve) are widely accepted, it remains a challenge to predict the firing rate at high temporal resolution in response to complex stimuli. In this study we explore models for in vivo, single cell responses in the medial nucleus of the trapezoid body (MNTB) under complex sound stimulation. We estimate a family of models, the multilinear models, encompassing the classical spectrotemporal receptive field and allowing arbitrary input-nonlinearities and certain multiplicative interactions between sound energy and its short-term auditory context. We compare these to models of more traditional type, and also evaluate their performance under various stimulus representations. Using the context model, 75% of the explainable variance could be predicted based on a cochlear-like, gamma-tone stimulus representation. The presence of multiplicative contextual interactions strongly reduces certain inhibitory/suppressive regions of the linear kernels, suggesting an underlying nonlinear mechanism, e.g. cochlear or synaptic suppression, as the source of the suppression in MNTB neuronal responses. In conclusion, the context model provides a rich and still interpretable extension over many previous phenomenological models for modeling responses in the auditory brainstem at submillisecond resolution.
منابع مشابه
Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil.
Activity-dependent transneuronal regulation of neuronal soma size has been studied in the medial nucleus of the trapezoid body and ventral cochlear nucleus of adolescent gerbils. Cochlear ablation or tetrodotoxin has been used to eliminate afferent electrical activity in auditory nerve fibers permanently or for 24 or 48 hours. Previous studies have shown that the cross-sectional area of spheric...
متن کاملMedial Nucleus of the Trapezoid Body and Superior Paraolivary Nucleus of the Rat May Play a Role in Sound Duration Coding
We describe neurons in two nuclei of the superior olivary complex that display differential sensitivities to sound duration. Single units in the medial nucleus of the trapezoid body (MNTB) and superior paraolivary nucleus (SPON) of anesthetized rats were studied. MNTB neurons produced primary-like responses to pure tones and displayed a period of suppressed spontaneous activity after stimulus o...
متن کاملNeurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding.
We describe neurons in two nuclei of the superior olivary complex that display differential sensitivities to sound duration. Single units in the medial nucleus of the trapezoid body (MNTB) and superior paraolivary nucleus (SPON) of anesthetized rats were studied. MNTB neurons produced primary-like responses to pure tones and displayed a period of suppressed spontaneous activity after stimulus o...
متن کاملThe principal neurons of the medial nucleus of the trapezoid body and NG2+ glial cells receive coordinated excitatory synaptic input
Glial cell processes are part of the synaptic structure and sense spillover of transmitter, while some glial cells can even receive direct synaptic input. Here, we report that a defined type of glial cell in the medial nucleus of the trapezoid body (MNTB) receives excitatory glutamatergic synaptic input from the calyx of Held (CoH). This giant glutamatergic terminal forms an axosomatic synapse ...
متن کاملDecoding the auditory corticofugal systems q Jeffery
The status of the organization of the auditory corticofugal systems is summarized. These are among the largest pathways in the brain, with descending connections to auditory and non-auditory thalamic, midbrain, and medullary regions. Auditory corticofugal influence thus reaches sites immediately presynaptic to the cortex, sites remote from the cortex, as in periolivary regions that may have a c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Network
دوره 21 1-2 شماره
صفحات -
تاریخ انتشار 2010